HeLo – A New Path for Multimodal Emotion Recognition
Modern emotion-recognition systems increasingly leverage data from multiple sources—ranging from physiological signals (e.g., heart rate, skin conductance) to facial video. The goal is to capture the richness of human feelings, where multiple emotions often co-occur. Traditional approaches, however, focused on single-label classification (e.g., “happy” or “sad”). The paper “HeLo: Heterogeneous Multi-Modal Fusion with Label Correlation for Emotion Distribution Learning” introduces an entirely new paradigm: emotion distribution learning, where the model predicts the probability of each basic emotion being present. ...