Cost-Constrained LLM Cascades — Meet C3PO

Imagine you have an army of helpers — several different Large Language Models (LLMs), each capable of handling tasks from simple queries to complex reasoning. But each helper costs something: time, compute, or actual money if you’re using an API. So the question is: Can we orchestrate these models wisely — starting from the cheapest one that might do the job, escalating only when needed — without exceeding a cost budget? ...

November 14, 2025

Accurate Satellite Rain Forecasting with Physics-Conditioned Neural Networks

Imagine this: you’re driving, clouds are gathering, and your weather app says “heavy rain in 15 minutes” — but there are no local radars, and it gets it wrong. Sounds familiar? That’s exactly the kind of problem tackled by the new research paper Precipitation nowcasting of satellite data using physically conditioned neural networks (by Antônio Catão et al.). The authors present a model that can forecast precipitation using only satellite data, powered by a neural network that’s conditioned by physics. In short: less “black box” magic, more scientific reasoning — and better forecasts where radar coverage is weak or nonexistent. ...

November 10, 2025

No Prior, No Leakage – can we really reconstruct data from a neural network?

In the era of artificial intelligence, privacy protection is one of the hottest topics. Neural networks often “memorize” pieces of training data. In extreme cases, an attacker could try to reconstruct the original examples just from the trained model’s parameters (so-called reconstruction attacks). Imagine a medical model that could reveal fragments of sensitive patient images — alarming, right? The new paper “No Prior, No Leakage: Revisiting Reconstruction Attacks in Trained Neural Networks” (arxiv.org) challenges this fear. It shows that without additional knowledge (priors), reconstruction is fundamentally undecidable. In other words: model parameters alone may not be enough to recover the training data. ...

September 26, 2025

How to Detect Credit Card Fraud?

Today, credit card transactions are everywhere — online shopping, bill payments, travel, etc. Unfortunately, the number of fraud cases is also growing. The challenge is that frauds are very rare compared to normal transactions. This means that simple models trained on raw data often “ignore” these rare cases — because statistically, it’s cheaper to be wrong on a few frauds than on thousands of normal payments. The paper “Credit Card Fraud Detection” (arXiv:2509.15044) analyzes how to improve fraud detection by applying data preprocessing techniques (class balancing) and comparing several models. This is crucial because the effectiveness of such systems has real-world consequences — for banks, payment platforms, and user security. ...

September 21, 2025

JANUS – how to fool Graph Neural Networks and what it teaches us

Graph Neural Networks (GNNs) are among the most powerful tools in modern AI. They can analyze data structured as nodes and connections – like social networks, financial links, protein structures, or transportation systems. But success comes with risk: GNNs can be attacked. A new research paper introduces JANUS – a framework that learns to inject fake nodes into graphs in a way that is extremely hard to detect. While framed as an attack, the insights are equally valuable for building defenses. ...

September 17, 2025

Reinforcement Learning in Pinterest Ads – DRL-PUT in action!

Can the effectiveness of an advertising system be improved by almost 10% simply by tuning the weights in the ranking function more intelligently? It turns out the answer is yes – and that’s exactly what the paper Deep Reinforcement Learning for Ranking Utility Tuning in the Ad Recommender System at Pinterest (arXiv:2509.05292) is about. Traditionally, ad ranking relies on a utility function – a linear combination of multiple model predictions, such as CTR (click-through rate), conversion probability, or other business metrics. The problem? The weights of these predictors were historically tuned manually by engineers. This approach: ...

September 8, 2025

Edge AI: How to Accelerate Neural Networks on Specialized Hardware

Modern science, especially in the field of high-energy physics, generates unimaginable amounts of data. Experiments like the LCLS-II free-electron laser (FEL) at the SLAC National Accelerator Laboratory produce terabytes of data per second. Transmitting and storing all of it is impractical. The solution is to intelligently select data in real-time, right at the source. The publication “Neural Network Acceleration on MPSoC board: Integrating SLAC’s SNL, Rogue Software and Auto-SNL” is a fascinating case study of how to achieve this using artificial intelligence and specialized hardware. ...

September 1, 2025

Global Guarantees of Robustness: A Probabilistic Approach to AI Safety

Modern machine learning models, from image recognition systems to large language models, have achieved impressive capabilities. However, their strength can be deceptive. One of the biggest challenges in the field of AI is their vulnerability to adversarial attacks. These are intentionally crafted, small perturbations to input data (e.g., changing a few pixels in an image) that are imperceptible to humans but can completely fool the model, leading to incorrect and often absurd decisions. ...

August 27, 2025

Intern-S1: The New AI Scientist That's Redefining Research

Artificial intelligence has already transformed many industries, but the world of scientific research has been waiting for a true game-changer. While general AI models are powerful, they often lack the specialized knowledge needed for deep scientific inquiry. Enter Intern-S1, a new multimodal foundation model that’s set to bridge this gap and accelerate a new era of discovery. Developed by the Shanghai AI Laboratory, Intern-S1 is not just another large language model. It’s a specialized generalist, designed from the ground up to understand and process complex scientific data in various formats, from text and images to time-series data. ...

August 23, 2025

Exploring MCFRCL: A New Perspective on Continual Learning

In the world of artificial intelligence, Continual Learning is one of the biggest challenges. The goal is to enable AI models to learn new things sequentially without forgetting what they have learned before. This is a key ability that brings us closer to creating truly intelligent systems capable of adapting to a dynamically changing world. Unfortunately, traditional neural networks suffer from so-called catastrophic forgetting. When they learn a new task, they tend to overwrite the knowledge gained from previous tasks. The publication “Monte Carlo Functional Regularisation for Continual Learning” (arXiv:2508.13006) by Pengcheng Hao, Menghao Waiyan William Zhu, and Ercan Engin Kuruoglu presents an innovative approach to this problem. ...

August 19, 2025