Dynamic Fine-Tuning (DFT): How a Single Line of Code is Revolutionizing AI Training
In an era where Large Language Models (LLMs) like GPT-4 or Llama seem to understand the world, a fundamental challenge remains: how to teach them effectively and efficiently? The standard method is Supervised Fine-Tuning (SFT), which involves “feeding” the model thousands of examples of correct responses. However, as the groundbreaking paper “On the Generalization of SFT: A Reinforcement Learning Perspective with Reward Rectification” (arXiv:2508.05629) points out, SFT has a hidden flaw that limits its true potential. ...