CaPulse: Teaching Machines to Hear the Rhythm of Data

Can computers learn to “hear” the rhythm in a stream of data, much like we hear the rhythm in music? And by using this skill, can they better protect us from equipment failures, financial fraud, or health problems? A new scientific paper titled “CaPulse: Detecting Anomalies by Tuning in to the Causal Rhythms of Time Series” attempts to answer these questions. The Problem with Anomalies We live in a world of data. From our heartbeats and stock market fluctuations to energy consumption in a smart city—all of this is time series data, collected at regular intervals. Often lurking within this data are anomalies: strange, unexpected events that can signal a problem. This could be a sudden cardiac arrhythmia, a suspicious bank transaction, or an impending engine failure in a factory. ...

August 7, 2025

How to Teach AI to Handle Mistakes? Meet ε-Softmax

In the world of artificial intelligence, data is the fuel that powers machine learning models. But what if that fuel is contaminated? Mislabeled data, known as label noise, is a huge problem that can cause even the best algorithms to learn complete nonsense. The paper “ε-Softmax: Approximating One-Hot Vectors for Mitigating Label Noise,” accepted at the prestigious NeurIPS 2024 conference, offers an elegant solution. The Problem: When a Model Blindly Trusts Its Labels Let’s imagine we’re training a model to recognize animals. We show it a picture of a cute cat. In the traditional approach, we give it an absolutely certain piece of information, a so-called one-hot vector: ...

August 5, 2025