M²FMoE: When Experts Learn to Predict Floods
Time series forecasting is one of the most important applications of machine learning — from demand prediction, through infrastructure monitoring, to flood forecasting. The problem? Standard models optimize for typical cases. Yet it’s precisely the atypical ones — extreme events — that are often most important to predict. M²FMoE is a model that learns to predict both. The Problem: Extreme Events Break Standard Models Time series forecasting has made remarkable progress. Transformers, frequency-domain methods, and hybrid architectures achieve impressive results on benchmarks. But there’s a catch. ...