RLVMR: Wzmocnione Uczenie z Weryfikowalnymi Nagradzającymi Meta‑Rozumowaniem

Artykuł przedstawia RLVMR, innowacyjną metodę wzmocnionego uczenia (RL), która wprowadza weryfikowalne nagrody meta‑rozumowania wzmacniające zdolność działania na długich horyzontach czasowych. Agent generuje wewnętrzne sygnały wyjaśniające, które są oceniane pod względem weryfikowalności, co zwiększa odporność i jakość planowania :contentReference[oaicite:4]{index=4}. Wkład Formalizacja nagród meta‑rozumowania: agenci otrzymują dodatkowe sygnały nagród za weryfikowalność łańcuchów rozumowania. Protokół weryfikacji: pomocnicze ślady rozumowania są sprawdzalne i służą ocenie uzasadnień. Walidacja empiryczna na zadaniach RL z długim horyzontem – RLVMR przewyższa standardowe podejścia RL :contentReference[oaicite:5]{index=5}. Metoda Agent generuje łańcuch rozumowania $r = (r_1,\dots,r_T)$ wraz z akcjami $a_t$. Całkowita nagroda wynosi: $$ R_{\text{total}} = \sum_t R_{\text{env}}(a_t) + \lambda,R_{\text{meta}}(r), $$ gdzie $R_{\text{meta}}(r)$ jest duża tylko, jeśli łańcuch rozumowania przejdzie weryfikację; $\lambda$ reguluje wpływ meta‑rozumowania. ...

lipca 31, 2025

Nie tylko większe modele: dlaczego AI powinno lepiej widzieć, a nie tylko rosnąć

W ostatnich latach rozwój sztucznej inteligencji kojarzy się głównie z coraz większymi modelami i coraz większymi zbiorami danych. GPT-4, Claude, Gemini – każdy z nich bije rekordy rozmiarów i mocy obliczeniowej. Ale czy większy zawsze znaczy lepszy? Zespół badaczy (Baek, Park, Ko, Oh, Gong, Kim) w swojej najnowszej publikacji “AI Should Sense Better, Not Just Scale Bigger” (arXiv:2507.07820) przekonuje, że doszliśmy do momentu, w którym większe modele niekoniecznie są najbardziej efektywną drogą rozwoju. Zamiast tego proponują zupełnie nowe podejście: sensoryka adaptacyjna. ...

lipca 13, 2025