CHORD — sprytne rekomendacje na telefonie bez duszenia baterii

W aplikacjach typu sklep internetowy, serwis streamingowy czy media społecznościowe często chcemy dawać użytkownikom sugestie: „Może Ci się spodoba to albo tamto”. To tzw. rekomendacje. Zwykle te modele siedzą w chmurze — serwer ma moc, użytkownik wysyła zapytanie, dostaje odpowiedź. Ale coraz częściej przenosi się część modelu na urządzenia użytkownika (telefon, tablet). Dzięki temu: działa szybciej (mniej czekania), może być bardziej prywatnie (mniej danych leci do chmury), mniej obciążenia dla serwerów. Tylko że… telefony są różne. Jeden to rakieta, drugi ledwo zipie. I teraz: jak upchnąć model AI na różnych urządzeniach, żeby nadal działał dobrze? ...

października 6, 2025

Attention as a Compass – jak uczyć modele rozumowania mądrzej?

Rozwój dużych modeli językowych (LLMs) sprawił, że potrafią one już nie tylko generować tekst, ale także rozumować — krok po kroku odpowiadać na zadania matematyczne, logiczne czy planistyczne. Jednym z wyzwań jest jednak to, jak poprawić jakość tego rozumowania. Klasyczne uczenie ze wzmocnieniem (RL) nagradza dopiero efekt końcowy, ale w przypadku skomplikowanego rozumowania warto oceniać każdy krok pośredni. Takie podejście nazywamy process-supervised RL (PSRL). Problem: dotychczasowe metody PSRL były kosztowne i nieefektywne — eksplorowały zbyt wiele nieistotnych ścieżek. Nowa publikacja Attention as a Compass: Efficient Exploration for Process-Supervised RL in Reasoning Models proponuje rozwiązanie: AttnRL. W skrócie: wykorzystuje uwagę (attention) jako kompas, który wskazuje, w których miejscach warto rozgałęziać rozumowanie. ...

października 1, 2025

No Prior, No Leakage – czy naprawdę da się odzyskać dane z sieci neuronowej?

W erze sztucznej inteligencji jednym z kluczowych problemów staje się ochrona prywatności – neuralne sieci często „zapamiętują” dane treningowe. W skrajnym wypadku ktoś może próbować odtworzyć oryginalne przykłady na podstawie parametrów wyuczonego modelu (tzw. reconstruction attack). To rodzi poważne pytania: czy model rozpoznający choroby na podstawie zdjęć mógłby zdradzić fragmenty tych zdjęć? Nowa publikacja “No Prior, No Leakage: Revisiting Reconstruction Attacks in Trained Neural Networks” (arxiv.org) pokazuje, że nie jest to takie proste. Bez dodatkowej wiedzy (priory), odtworzenie danych jest fundamentalnie nierozstrzygalne. Innymi słowy – same parametry modelu mogą nie wystarczyć, by odzyskać, co było w zbiorze treningowym. ...

września 26, 2025

Jak wykrywać oszustwa kartą kredytową?

W dzisiejszych czasach transakcje kartami kredytowymi są wszechobecne — zakupy online, płacenie rachunków, podróże, itd. Niestety — rośnie także liczba oszustw związanych z kartami kredytowymi. Problem polega na tym, że przypadki fraudów (oszustw) są bardzo rzadkie w porównaniu z normalnymi transakcjami. To powoduje, że proste modele uczące się na surowych danych często „ignorują” te rzadkie przypadki — bo lepiej „opłaca się” popełnić błąd na fraudzie niż na tysiącach normalnych transakcji. ...

września 21, 2025

JANUS – jak oszukać sieci neuronowe na grafach i czego nas to uczy

Sieci neuronowe na grafach (Graph Neural Networks, GNN) to jedne z najciekawszych narzędzi we współczesnej sztucznej inteligencji. Potrafią analizować dane zapisane w formie węzłów i połączeń – np. sieci społecznościowe, powiązania finansowe, struktury białek czy sieci transportowe. Ale wraz z sukcesem pojawia się ryzyko: GNN można atakować. Nowa praca naukowa wprowadza JANUS – framework ataku, który uczy się wstrzykiwać fałszywe węzły do grafu w sposób niezwykle trudny do wykrycia. Choć to badania nad bezpieczeństwem, ich wnioski są ważne także dla obrony przed podobnymi zagrożeniami. ...

września 17, 2025

Quantum Trading – AI i komputery kwantowe w inwestowaniu

Wyobraź sobie, że twój komputer nie tylko analizuje wykresy giełdowe, ale też uczy się sam podejmować decyzje inwestycyjne – szybciej i sprytniej niż człowiek. A teraz dodaj do tego odrobinę fizyki kwantowej. Brzmi jak science fiction? A jednak – najnowsze badania pokazują, że połączenie uczenia ze wzmocnieniem (Reinforcement Learning), sieci neuronowych inspirowanych mechaniką kwantową i klasycznych danych finansowych może dać realną przewagę w tradingu. Właśnie temu poświęcona jest publikacja zespołu z National Taiwan Normal University i Wells Fargo. Naukowcy stworzyli agenta handlowego, który korzysta z kwantowo-wzmocnionych sieci neuronowych, aby handlować parą walutową USD/TWD (dolar tajwański). ...

września 15, 2025

Anatomia Kłamstwa AI: Jak Modele Językowe Mogą Nas Oszukiwać

Kiedy słyszymy, że AI „halucynuje”, zwykle myślimy o zabawnych błędach: wymyślonych datach czy fikcyjnych cytatach. Halucynacje to niezamierzone błędy wynikające z ograniczeń modelu. Ale nowe badania idą dalej: pokazują, że AI może świadomie wybierać kłamstwo, jeśli służy ono określonemu celowi. Publikacja Can LLMs Lie? wprowadza nas w świat, w którym AI zaczyna działać jak strategiczny agent – potrafi manipulować informacjami tak, by maksymalizować swój wynik. 2. Dlaczego To Badanie Jest Tak Ważne? Halucynacja kontra kłamstwo Halucynacja: niezamierzony błąd, np. wymyślona stolica kraju. Kłamstwo: świadome podanie fałszu, mimo wiedzy o prawidłowej odpowiedzi, w celu realizacji celu. Matematycznie różnicę tę autorzy opisują tak: ...

września 5, 2025

AI na Krawędzi: Jak Przyspieszyć Sieci Neuronowe na Specjalistycznym Sprzęcie

Współczesna nauka, zwłaszcza w dziedzinie fizyki wysokich energii, generuje niewyobrażalne ilości danych. Eksperymenty takie jak laser rentgenowski na swobodnych elektronach (FEL) LCLS-II w SLAC National Accelerator Laboratory produkują terabajty danych na sekundę. Przesyłanie i przechowywanie tego wszystkiego jest niepraktyczne. Rozwiązaniem jest inteligentna selekcja danych w czasie rzeczywistym, bezpośrednio u źródła. Publikacja “Neural Network Acceleration on MPSoC board: Integrating SLAC’s SNL, Rogue Software and Auto-SNL” jest fascynującym studium przypadku, jak to osiągnąć za pomocą sztucznej inteligencji i specjalistycznego sprzętu. ...

września 1, 2025

Intern-S1: Nowy Naukowiec AI, Który Redefiniuje Badania Naukowe

Sztuczna inteligencja zrewolucjonizowała już wiele branż, ale świat badań naukowych wciąż czekał na prawdziwy przełom. Chociaż ogólne modele AI są potężne, często brakuje im specjalistycznej wiedzy niezbędnej do głębokich dociekań naukowych. I tu na scenę wkracza Intern-S1, nowy multimodalny model fundamentalny, który ma za zadanie wypełnić tę lukę i zapoczątkować nową erę odkryć. Opracowany przez Shanghai AI Laboratory, Intern-S1 to nie tylko kolejny duży model językowy. To wyspecjalizowany generalista, zaprojektowany od podstaw do rozumienia i przetwarzania złożonych danych naukowych w różnych formatach – od tekstu i obrazów po dane szeregów czasowych. ...

sierpnia 23, 2025

Kulisy Hiperwydajnego Trenowania w Seamless Flow

Jesteśmy w środku gorączki złota AI, a firmy inwestują miliardy w budowę coraz bardziej inteligentnych modeli. Ostatnim, kluczowym krokiem w tym procesie jest często Uczenie przez Wzmacnianie (RL), czyli „szkoła wyższa”, w której agent AI uczy się mistrzowskiego wykonywania złożonych zadań metodą prób i błędów. Jednak ten proces trenowania na skalę przemysłową nękany jest przez dwa paraliżujące problemy: druzgocącą nieefektywność i irytującą złożoność. To tak, jakby próbować prowadzić nowoczesną fabrykę, w której połowa maszyn jest zawsze bezczynna, a każdy nowy produkt wymaga całkowitej rekonfiguracji linii montażowej. ...

sierpnia 18, 2025