Jak nauczyć AI radzić sobie z błędami? Poznaj ε-Softmax

W świecie sztucznej inteligencji dane są paliwem, które napędza modele do nauki. Ale co, jeśli to paliwo jest zanieczyszczone? Błędnie oznaczone dane, zwane szumem w etykietach, to ogromny problem, który może sprawić, że nawet najlepszy algorytm nauczy się kompletnych bzdur. Publikacja “ε-Softmax: Approximating One-Hot Vectors for Mitigating Label Noise”, przyjęta na prestiżową konferencję NeurIPS 2024, proponuje eleganckie rozwiązanie tego problemu. Problem: Gdy model ślepo ufa etykietom Wyobraźmy sobie, że uczymy model rozpoznawać zwierzęta. Pokazujemy mu zdjęcie uroczego kota. W tradycyjnym podejściu dajemy mu absolutnie pewną informację, tzw. wektor one-hot: ...

sierpnia 5, 2025