Dynamiczne Dostrajanie (DFT): Jak jedna linijka kodu rewolucjonizuje trenowanie AI

W erze, w której Duże Modele Językowe (LLM), takie jak GPT-4 czy Llama, zdają się rozumieć świat, wciąż istnieje fundamentalne wyzwanie: jak skutecznie i efektywnie je uczyć? Standardową metodą jest Dostrajanie Nadzorowane (Supervised Fine-Tuning, SFT), które polega na “dokarmianiu” modelu tysiącami przykładów poprawnych odpowiedzi. Jednak, jak wskazuje przełomowa publikacja “On the Generalization of SFT: A Reinforcement Learning Perspective with Reward Rectification” (arXiv:2508.05629), SFT ma ukrytą wadę, która ogranicza jego prawdziwy potencjał. ...

sierpnia 11, 2025

ASkDAgger: Jak Sztuczna Inteligencja Uczy Się Efektywniej Dzięki Zadawaniu Pytań

W świecie, w którym roboty i systemy AI coraz częściej uczą się poprzez obserwację i interakcję z ludźmi, kluczowym wyzwaniem pozostaje efektywność tego procesu. Tradycyjne metody uczenia się przez naśladowanie (Imitation Learning) często wymagają od ludzkiego nauczyciela ciągłego nadzoru i korygowania błędów, co jest czasochłonne i kosztowne. Zespół naukowców z Jelle Luijkx na czele proponuje przełomowe rozwiązanie w swojej najnowszej publikacji zatytułowanej “ASkDAgger: Active Skill-level Data Aggregation for Interactive Imitation Learning”. ...

sierpnia 8, 2025

Jak sztuczna inteligencja może ujawnić pochodzenie miodu — spojrzenie na mineralne odciski palców

Zastanawiałeś się kiedyś, czy ten drogi słoik “miodu akacjowego” rzeczywiście pochodzi z akacji? Albo czy etykieta mówi prawdę o kraju pochodzenia? Nowa publikacja pokazuje, że uczenie maszynowe i analiza minerałów mogą to sprawdzić — bez żadnego mikroskopu. Skąd pomysł? Gdy pszczoły produkują miód, przemycają do niego śladowe ilości pierwiastków z roślin i gleby. Te mineralne odciski palców — jak wapń, magnez czy cynk — różnią się zależnie od środowiska. To jak chemiczny podpis, który pozwala odczytać pochodzenie miodu. ...

lipca 30, 2025

HeLo – Nowa ścieżka rozwoju rozpoznawania emocji z danych multimodalnych

Współczesne systemy rozpoznawania emocji coraz częściej sięgają po dane z wielu źródeł – od sygnałów fizjologicznych (np. rytm serca, przewodność skóry) po obraz z kamery rejestrującej mimikę twarzy. Celem jest odzwierciedlenie bogactwa ludzkich odczuć, gdzie często współistnieje kilka emocji jednocześnie. Tradycyjne metody skupiały się jednak na jednoznacznym przypisaniu jednej emocji do próbki (np. „radość” lub „smutek”). Publikacja “HeLo: Heterogeneous Multi-Modal Fusion with Label Correlation for Emotion Distribution Learning” proponuje kompletnie nowe podejście – uczenie rozkładu emocji, w którym model przewiduje, z jakim prawdopodobieństwem występują każda z podstawowych emocji. ...

lipca 10, 2025

RetrySQL: samokorekta w generacji zapytań SQL

Zadanie text-to-SQL polega na przekształceniu zapytań w języku naturalnym na zapytania SQL wykonywane na relacyjnej bazie danych. Choć nowoczesne modele językowe (LLM) znakomicie radzą sobie z wieloma zadaniami generatywnymi, generowanie poprawnych, złożonych zapytań SQL nadal stanowi wyzwanie. W artykule RetrySQL: text-to-SQL training with retry data for self-correcting query generation autorzy przedstawiają nowy paradygmat treningowy, który uczy model samodzielnej kontroli i korekty wygenerowanych kroków rozumowania. Idea RetrySQL Generowanie kroków rozumowania Dla każdego przykładu z zestawu BIRD tworzony jest ciąg kroków, które prowadzą do budowy zapytania SQL (np. $FROM$ → $WHERE$ → $GROUP\ BY$), generowany syntetycznie przy użyciu GPT-4o. ...

lipca 7, 2025