No Prior, No Leakage – czy naprawdę da się odzyskać dane z sieci neuronowej?

W erze sztucznej inteligencji jednym z kluczowych problemów staje się ochrona prywatności – neuralne sieci często „zapamiętują” dane treningowe. W skrajnym wypadku ktoś może próbować odtworzyć oryginalne przykłady na podstawie parametrów wyuczonego modelu (tzw. reconstruction attack). To rodzi poważne pytania: czy model rozpoznający choroby na podstawie zdjęć mógłby zdradzić fragmenty tych zdjęć? Nowa publikacja “No Prior, No Leakage: Revisiting Reconstruction Attacks in Trained Neural Networks” (arxiv.org) pokazuje, że nie jest to takie proste. Bez dodatkowej wiedzy (priory), odtworzenie danych jest fundamentalnie nierozstrzygalne. Innymi słowy – same parametry modelu mogą nie wystarczyć, by odzyskać, co było w zbiorze treningowym. ...

września 26, 2025