Skuteczne prognozowanie opadów satelitarnych dzięki sieciom fizyko-warunkowanym

Wyobraź sobie: jesteś w samochodzie, za chwilę może lunąć deszcz, a Twoja aplikacja pogodowa nagle mówi „za 15 minut mocne opady” — tylko… nie ma radarów w regionie i system się myli. Brzmi znajomo? Właśnie temu problemowi przygląda się najnowsza praca naukowa Precipitation nowcasting of satellite data using physically conditioned neural networks (autorzy: Antônio Catão i in.). Dzięki niej mamy nie tylko model prognozowania opadów działający wyłącznie na danych satelitarnych, ale również model, który łączy uczenie głębokie z fizyką — czyli coś, co może działać tam, gdzie nie ma radarów. W skrócie: mniej „czarnej skrzynki”, więcej rozumienia – i lepsza prognoza tam, gdzie infrastruktura meteorologiczna jest ograniczona. ...

listopada 10, 2025

Rola AI w zarządzaniu konstelacjami satelitarnymi

Mega-konstelacje satelitów—setki lub tysiące małych satelitów współpracujących w sieć—rewolucjonizują globalną łączność. Jednak zarządzanie takimi systemami to wyzwanie: ruchome węzły, ograniczona moc obliczeniowa oraz potrzeba minimalizacji opóźnień. Projekt ConstellAI, wspierany przez Europejską Agencję Kosmiczną, bada zastosowanie sztucznej inteligencji (AI) do: Trasowania danych: wybierania najszybszej i najbardziej niezawodnej trasy przesyłu. Przydziału zasobów: dynamicznego rozdziału pasma, mocy nadawczej i slotów czasowych. Trasowanie danych za pomocą uczenia ze wzmocnieniem Klasyczne algorytmy trasowania (np. najkrótsza ścieżka) nie uwzględniają przeciążeń (kolejek) w węzłach. ConstellAI wykorzystuje uczenie ze wzmocnieniem, gdzie agent uczy się na podstawie doświadczeń: testuje różne trasy, obserwuje opóźnienia i stopniowo znajduje najlepsze drogi. ...

lipca 22, 2025