Dynamiczne Dostrajanie (DFT): Jak jedna linijka kodu rewolucjonizuje trenowanie AI
W erze, w której Duże Modele Językowe (LLM), takie jak GPT-4 czy Llama, zdają się rozumieć świat, wciąż istnieje fundamentalne wyzwanie: jak skutecznie i efektywnie je uczyć? Standardową metodą jest Dostrajanie Nadzorowane (Supervised Fine-Tuning, SFT), które polega na “dokarmianiu” modelu tysiącami przykładów poprawnych odpowiedzi. Jednak, jak wskazuje przełomowa publikacja “On the Generalization of SFT: A Reinforcement Learning Perspective with Reward Rectification” (arXiv:2508.05629), SFT ma ukrytą wadę, która ogranicza jego prawdziwy potencjał. ...