M²FMoE: Gdy eksperci uczą się przewidywać powodzie

Prognozowanie szeregów czasowych to jedno z najważniejszych zastosowań uczenia maszynowego — od przewidywania popytu, przez monitoring infrastruktury, po prognozowanie powodzi. Problem? Standardowe modele optymalizują się pod typowe przypadki. A to właśnie te nietypowe — ekstremalne zdarzenia — są często najważniejsze do przewidzenia. M²FMoE to model, który uczy się przewidywać jedno i drugie. Problem: Ekstremalne zdarzenia łamią standardowe modele Prognozowanie szeregów czasowych poczyniło ogromne postępy. Transformery, metody częstotliwościowe i architektury hybrydowe osiągają imponujące wyniki na benchmarkach. Ale jest haczyk. ...

stycznia 14, 2026

BALLAST: Gdy bandyta uczy bazę danych jak długo czekać

Wyobraź sobie, że jesteś liderem zespołu. Wysyłasz wiadomość i czekasz na odpowiedź. Jak długo czekasz, zanim uznasz, że kolega “zniknął”? Za krótko — i panikujesz bez powodu. Za długo — i cały projekt stoi. BALLAST to system, który uczy bazy danych odpowiadać na to pytanie automatycznie, używając technik uczenia maszynowego. Problem: Protokół Raft i jego achillesowa pięta Raft to protokół konsensusu — sposób, w jaki rozproszone bazy danych (jak etcd, Consul, CockroachDB) uzgadniają, kto jest “liderem” i jakie dane są aktualne. Działa tak: ...

stycznia 5, 2026

AI Co-Scientist: Jak nauczyć model pisać plany badawcze lepsze niż człowiek?

Co by było, gdyby AI mogło nie tylko odpowiadać na pytania, ale aktywnie planować badania naukowe? Nie chodzi o generowanie tekstu — chodzi o tworzenie spójnych, nowatorskich planów eksperymentów, które eksperci oceniają jako lepsze od tych pisanych przez ludzi. Brzmi jak science fiction? Naukowcy z Meta AI i partnerów właśnie to osiągnęli. Problem: Jak ocenić kreatywność naukową? Trenowanie modeli do zadań “zamkniętych” (matematyka, kodowanie) jest stosunkowo proste — odpowiedź jest poprawna lub nie. Ale jak ocenić plan badawczy? ...

grudnia 30, 2025

HyDRA: Jak nauczyć telefon rozumieć obrazy bez palenia budżetu

Wyobraź sobie, że chcesz nauczyć swój telefon rozpoznawać zdjęcia potraw i podawać przepisy. Problem? Modele, które to potrafią, są gigantyczne i wymagają mocy obliczeniowej serwerowni Google. HyDRA to sprytna metoda, która pozwala dostosować takie modele do działania na urządzeniach mobilnych — bez bankructwa i bez topienia planety. Problem: Słoń w telefonie Vision Language Models (VLM) to modele AI, które rozumieją jednocześnie obrazy i tekst. Możesz pokazać im zdjęcie i zapytać “co tu widzisz?” albo “jak to naprawić?”. Brzmi świetnie, ale jest haczyk. ...

grudnia 27, 2025

Skuteczne prognozowanie opadów satelitarnych dzięki sieciom fizyko-warunkowanym

Wyobraź sobie: jesteś w samochodzie, za chwilę może lunąć deszcz, a Twoja aplikacja pogodowa nagle mówi „za 15 minut mocne opady” — tylko… nie ma radarów w regionie i system się myli. Brzmi znajomo? Właśnie temu problemowi przygląda się najnowsza praca naukowa Precipitation nowcasting of satellite data using physically conditioned neural networks (autorzy: Antônio Catão i in.). Dzięki niej mamy nie tylko model prognozowania opadów działający wyłącznie na danych satelitarnych, ale również model, który łączy uczenie głębokie z fizyką — czyli coś, co może działać tam, gdzie nie ma radarów. W skrócie: mniej „czarnej skrzynki”, więcej rozumienia – i lepsza prognoza tam, gdzie infrastruktura meteorologiczna jest ograniczona. ...

listopada 10, 2025

Jak wykrywać oszustwa kartą kredytową?

W dzisiejszych czasach transakcje kartami kredytowymi są wszechobecne — zakupy online, płacenie rachunków, podróże, itd. Niestety — rośnie także liczba oszustw związanych z kartami kredytowymi. Problem polega na tym, że przypadki fraudów (oszustw) są bardzo rzadkie w porównaniu z normalnymi transakcjami. To powoduje, że proste modele uczące się na surowych danych często „ignorują” te rzadkie przypadki — bo lepiej „opłaca się” popełnić błąd na fraudzie niż na tysiącach normalnych transakcji. ...

września 21, 2025

AI na Krawędzi: Jak Przyspieszyć Sieci Neuronowe na Specjalistycznym Sprzęcie

Współczesna nauka, zwłaszcza w dziedzinie fizyki wysokich energii, generuje niewyobrażalne ilości danych. Eksperymenty takie jak laser rentgenowski na swobodnych elektronach (FEL) LCLS-II w SLAC National Accelerator Laboratory produkują terabajty danych na sekundę. Przesyłanie i przechowywanie tego wszystkiego jest niepraktyczne. Rozwiązaniem jest inteligentna selekcja danych w czasie rzeczywistym, bezpośrednio u źródła. Publikacja “Neural Network Acceleration on MPSoC board: Integrating SLAC’s SNL, Rogue Software and Auto-SNL” jest fascynującym studium przypadku, jak to osiągnąć za pomocą sztucznej inteligencji i specjalistycznego sprzętu. ...

września 1, 2025

Globalne Gwarancje Odporności: Probabilistyczne Podejście do Bezpieczeństwa AI

Współczesne modele uczenia maszynowego, od systemów rozpoznawania obrazu po wielkie modele językowe, osiągnęły imponujące zdolności. Jednak ich siła bywa zwodnicza. Jednym z największych wyzwań w dziedzinie AI jest ich podatność na ataki adwersarialne (ang. adversarial attacks). Są to celowo spreparowane, niewielkie zaburzenia danych wejściowych (np. zmiana kilku pikseli w obrazie), które są niezauważalne dla człowieka, ale potrafią całkowicie zmylić model, prowadząc do błędnych i często absurdalnych decyzji. Do tej pory walka z tym problemem koncentrowała się na dwóch głównych frontach: ...

sierpnia 27, 2025

Intern-S1: Nowy Naukowiec AI, Który Redefiniuje Badania Naukowe

Sztuczna inteligencja zrewolucjonizowała już wiele branż, ale świat badań naukowych wciąż czekał na prawdziwy przełom. Chociaż ogólne modele AI są potężne, często brakuje im specjalistycznej wiedzy niezbędnej do głębokich dociekań naukowych. I tu na scenę wkracza Intern-S1, nowy multimodalny model fundamentalny, który ma za zadanie wypełnić tę lukę i zapoczątkować nową erę odkryć. Opracowany przez Shanghai AI Laboratory, Intern-S1 to nie tylko kolejny duży model językowy. To wyspecjalizowany generalista, zaprojektowany od podstaw do rozumienia i przetwarzania złożonych danych naukowych w różnych formatach – od tekstu i obrazów po dane szeregów czasowych. ...

sierpnia 23, 2025

Odkrywając MCFRCL: Nowe Spojrzenie na Uczenie Ciągłe

W świecie sztucznej inteligencji, uczenie ciągłe (Continual Learning) jest jednym z największych wyzwań. Chodzi o to, aby modele AI mogły uczyć się nowych rzeczy w sposób sekwencyjny, bez zapominania tego, czego nauczyły się wcześniej. To kluczowa umiejętność, która przybliża nas do stworzenia prawdziwie inteligentnych systemów, zdolnych do adaptacji w dynamicznie zmieniającym się świecie. Niestety, tradycyjne sieci neuronowe cierpią na tzw. katastrofalne zapominanie (catastrophic forgetting). Gdy uczą się nowego zadania, mają tendencję do nadpisywania wiedzy zdobytej przy poprzednich zadaniach. Publikacja “Monte Carlo Functional Regularisation for Continual Learning” (arXiv:2508.13006) autorstwa Pengcheng Hao, Menghao Waiyan William Zhu i Ercan Engin Kuruoglu, przedstawia nowatorskie podejście do tego problemu. ...

sierpnia 19, 2025